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ABSTRACT

A particular aspect of autonomous target tracking for planetary bodies, detection of “distinct” features appearing in the
scene, is addressed. Using the gray level cooccurrence (GLC) matrices, object detection is done by applying measures (metrics)
defined on GLC matrices to different regions on the image plane. The decision logic for detecting “unique” features can then be
implemented using a supervised or unsupervised parametric method on a set of G] .C.-metric measurements. Detailed
algorithms and test results based on Voyager image data are presented.
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1. INTRODUCTION

Onboard feature detection capability for planetary spacecraft can plevent  the loss of opportunities to conduct detailed
investigations of serendipitous targets such as erupting volcanoes on Jupiter’s moon Io, the moon of Asteroid Ida, geysers on
Neptune’s  moonl ’riton, and other such features. We have just begun the research to detect, track, and point to targets of
interest that consist of celestial bodies terrain features. 1-3 Ttle geome.t~ic and radio  metric simplicity of planetary features

compared to the more complicated terrestrial scenes addressed by the general computer vision discipline should permit us to
quickly advance and mature this intelligent, vision-based technology for space exploration. Although the target features and
background definitions are somewhat nebulous, some predictable features, such as circular spots, craters, mountains, valleys,
andline  ll~arkings arecharacteristic  ofsurveyed  planets andsatellites  inoursolarsystern  (see Fig. 1).

In this paper, we will address a particular aspect of autonomous target tracking for planetary bodies, detection of “distinct”
objects appearing in the scene. General functional requirements for planetary exploration based on image processing and
pattern recognition have been addressed]. Note that we will use the term “feature” to denote the distinct object that can be used
to map the targeted celestial body and to initiate/plan detailed investigations through spacecraft maneuvers and pointing to meet
desired science objectives.

Although high resolution and multispectral images are available in ]Jlanetary  exploration, object detection based on step-
wise analysis of spectral, spatial, and texture properties is not practical in this case. Besides the flight-computer-processing
throughput and memory limitations, the use of the science imaging instruments (multispectral images are science-driven and
achieved through color filters) may not be appropriate (because of the cal nera characteristics--very narrow field-of-view, sharply
focussed, etc.) for designating feature points for science observations. Furthermore, the required a priori knowledge concerning
the multidimensional characteristics of desired features will be extremely difficult to come by. Our current thinking favors a
lower resolution, wider field-of-view, and fast-readout camera for detcctit Ig and designating science pointing operations.

The use of the gray level cooccurrence  (G1 ,C) matrices~ proved effective in characterizing distributed and textured patterns.6

Object detection is done by applying measures (metrics) defined on GL(: matrices to cliffercnt regions on the image plane. The
decision logic for detecting “unique” objects can then be implcrnened  using a supervised or unsupervised parametric method for
a set of C] LC-metric measurements (this is basically a systematic appro:ich for thresholcling). To evaluate the effectiveness of
this texture-based image analysis on planetary terrains, the conventional texture nleasures7 were employed. Detailed analysis
in detecting planetary features was conducted using real images from Voyager imag,e clata. Preliminary results are quite
promising. 1 iflicient detection of distinct planetary features may be achieved using only a single GLC-baseci matric.
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(a) Uranus’ moon Miranda (b) Neptune’s moon Triton

(c) Jupiter’s moon 10 (d) Jupiter

I~ig. 1. Typical planetary features from the Voyager archive. These images are 800x800
pixels. Regions from these images are selected for evaluating the performance of
GLC-based feature detcctic)n metrics.

2 .  CANI)II)ATII DETl~C’1’ION MEI’RICS

A GLC matrix S(6,7) = [s(i, j, 6, 7) ] estimates the second-order prot,ability of having a transition from gray level i to
gray level j for any two pixels within the tile 7 that are separated by 6. 6 can be defined either in the polar form (d, 0) or in
Cartesian (Ax, Ay ). lhus, GLC matrices are I.xL, where L is the number of gray levels. Candidate GLC-based metrics7 are
inertia, cluster shade, cluster prominence, local homogeneity, energy, and entropy:

Inertia
1,-1 L-1

I(6, T) = ~ ~ (i - j) 2 s(i, j, 6, 7,J
i=oj =(-1
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Cluster shade

Cluster prominence

Local homogeneity

Energy

1,-1 L-1
A(t$, T)= ~ ~(i-tj- px-pj)3.v(i, j,i3T)

i= Oj=O

L-1 L-1
Entropy H(8,  T) = ~ ~ s(i, j, cl 7) log(s(i,  j, 8, T ) )

i=oj=o

L-1 1.-1 L-1 L-1
where PA = xi ~s(i, j,6T)  ancl p,= ~ ~js(i, j,?i T).

i=oj=t) i= Oj=O

Intuitively, inertia highlights random texture; cluster shade and cluster prominence exphasize locally shadowed areas; local
homogeneity is almost an inverse function of inertia; energy maximizes for plain textures (i.e., no change in gray level); and
entropy is similar to energy, but with a more prominent separation from ~)lain texture.

(a) Crater

(c) Background terrain

(b) Valley

3. . I?XP11RIM13NTS

In the first set of experiments, we select three regions fro~l~
the Mira!lda image of Fig, 1 for evaluating the performance of
candidate feature detectic)rr  metrics (see F:ig. 2). The regions
are 51x51 pixels in size. I’he detection matrics for different
values of’ spacing parameter d given 0° &angle direction (i.e.,
no rotation) are computed using 8 gray levels. As shown in
Fig. 3, itmrtia performs well for large d because the intensity
is more likely to be randomly different; cluster shade and
cluster prominence favor local binary light-dark regions, and
thus prefer smaller d (note the sign change for crater and
valley features in the cluster shade metric which is cubic is
nature); local hornogcncity  is somewhat similar to inertia but
with a high value. for small d that decreases as d increases, and
separations of features from background are more prominent
as d incl eases; energy and entropy, although their separations
of feature from back~round  are not extremely large in
magnitude, possess a desirable property–constancy over a wicic
range of d–which simplifies the detection threshold

Fig. 2. Regions selected for evaluation from deterrnirlation.  Cluster prominence is also a good candidate

the Fig. 1 Miranda image. These features are mainly l~ecause of the magnitude of feature and background

quite common in solar system bodies. separation for small d which simplifies the metric calculation.
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I~ig. 3. Detection sensitivity y of candidate GI.C-based  metrics 1 or the cmter,  valley, and background
regions shown in l~ig. 2. Cluster prominence performs extremely well for small cl, but entropy
provides constancy in terms of featurehackgrotlnd separation over a wide range of d.
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I:ig. 4. IMcction  sensitivity of cluster prominence with respect to rotation for the crater, valley, and
background regions shown in I:ig. 2. Due to sufficient separatic)n of features fmm  background, feature
detection may be achieved by applying an appropriate threshold to the measured cluster prominence value.
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Iiig. 5. I)etcction sensitivity of entrc)py with respect to rotation for the crater, valley, and background
regions shown in Fig. 2. Of all the metrics, entropy is the least sensitive to feature orientation.



Rotation sensitivities with repect to the directional angle O are also evaluated for all the metrics at every 30° interval.
Results show that the crater region is not very sensitive to rotation. However, except for the energy and entropy metrics,
separations from background for the valley region are significant] y distorted at 120° (this angle aligns one of the axes with the
long-narrow stretch of the valley). Inertia and local homogeneity perforutlance at 120° is worse than at other O angles, while
other metrics seem to improve the feature-background separation at ttlis angle. Although the characteristics of cluster
prominence significantly change at 120°, this does not jeopardize the ability to differentiate features from the nearby
background terrain. Figures 4 and 5 demonstrate the detection sensitivity of cluster prominence and entropy with respect to 6
(i.e., rotation).

In our next experiment, we wish to address the performance of candidate detection metrics for various types of planetary
scenes and features. Figures 6-8 show the performance of cluster prominence and entropy on Triton, Io and Jupiter. Since the
selected Io dark area and Jupiter regions are about twice the size of other selected regions, the d-increment for these regions is 2
instead of 1. To make this metric selection process more stringent, the satne metric scalings’ and ranges must be applied to all
the different features and planetoids selected in this experiment. This would simplify the standardization of “distinct” feature
definitions based on some a priori metric criteria.
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Fig. 6. Regions selecteci for evaluation from the I;ig. 1 Triton ilnage. Cluster prominence performance
degraded a little bit in comparison to the Miranda features. IIowever,  the ent[opy performance is holding
steady in spite of differences in planetary scenes.



As shown in Fig. 6, cluster prominence perforn-rance  on Triton again exhibits superior detectability at small d, as
previously shown in the Miranda images (although the performance at high d is not as good). However, entropy (which has
outperformed cluster prominence with respect to rotation sensitivity) appears to possess another desirable trait of being, to
some extent, scene (topological/geological) invariant.
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Fig. 7. Regions selected for evaluation from the Fi,g. 1 Io image. Applying the same metric
scalings and ranges for all the test images, detectability of cluster pronlinence  significantly
degraded, while entropy suffered only minor degradation,
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I~ig. 8. Regions selected for evaluation from the Fig. 1 Jupiter image. Complexity of the selected
background regions renders cluster prominence ineffective. However, detectability performance of
the entropy metric remains unchanged from scene to scene.

I~igures 7-8 show the performance results of cluster prominence and entropy on different types of planetary features and
background terrains. Io and Jupiter are very colorful, and their dynamic features (volcanoes and storms) are quite different from
the static features (craters and valleys) of Miranda and Triton. As expected, the cluster prominence performance suffers from
the different colors of natural background terrains. On the other han(i, entropy appears to provide consistent detection
performance for isolating “distinct” planetary features.

4. SUMMARY ANI) CONCLUSIONS

The primary goal of this study is to find an efficient way of autonomously detecting planetary features that is applicable to
future exploration of known and unknown celestial bodies. In our opinion, classification of planetary features, such as craters,
volcanoes, mountains, valleys, riverbeds, weather storms, geysers, etc., is better left to visual inspections by planetary
scientists instead of trying to automate on board this very difficult perception process. ~round automation to ]ocate patterns of

—



interest8-9  does not have to deal with onboard computing limitations and lack of a priori knowledge. Furthermore, shading
ambiguity with respect to the convexity of planetary surfaces can lead to misinterpretation of terrain features. 10 Thus, the
focus remains on automating the detection of “distinct” planetary features that incorporates all the different features of scientific
interest to permit effective data collection during planetary exploration. Looking at the different planetary images and
arbitrarily selected interesting regions for this study, we believe that texture-based coupled with sharp-edge detection is
typically desired (although this is not a scientific approach to test human perception ability). Preliminary results based on
applying various GLC-based metrics accentuate the superiority of the entl opy metric over others (with respect to sensitivities
to rotation and terrain/geological differences) when dealing with plarletary  terrain features. More research to address
prioritization of detected features is needed, and work to formulate, test and improve this feature detection process for
autonomous planetary spacecraft is ongoing.
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